33 research outputs found

    The Research and Design of Building Decoration Materials’ Sales Management System Based on B/S

    Get PDF
    目前,许多建筑装饰材料销售机构,使用手工方式管理所有的经营业务。随着信息共享网络时代的到来,信息更透明,竞争更剧烈,手工管理的不足日趋明显。就企业生存和发展而言,管理手段先进程度已成为越来越重要的商场制胜要素。采用高科技手段,运用计算机技术,是提高竞争能力的有效途径。许多企业迫切需要一套结合自身实际情况的管理系统,以提高企业竞争能力。 销售是销售机构的经济命脉,销售管理对销售机构的生存和发展起着决定性的作用。传统的销售管理方法已不能适应市场的需求,实践证明信息管理系统可以提供丰富准确的信息,让管理者随时掌握运营状态,可以提高工作效率减少管理费用,可以优化库存减少资金投入,满足管理者的需求,为...Up to now, many building decoration materials’ sales agencies have been using manual mode to manage their business. With the arrival of the internet era, information becomes more transparent, competitions play much fiercer, and the deficiencies of manual management become more apparent. With respect to the survival and development of the enterprise, the advanced degree of management method has bec...学位:工程硕士院系专业:软件学院_工程硕士(软件工程)学号:X200923003

    A Note on Tachyons in the D3+D3ˉD3+{\bar {D3}} System

    Full text link
    The periodic bounce of Born-Infeld theory of D3D3-branes is derived, and the BPS limit of infinite period is discussed as an example of tachyon condensation. The explicit bounce solution to the Born--Infeld action is interpreted as an unstable fundamental string stretched between the brane and its antibrane.Comment: 10 pages, 2 figures. v2: minor changes, acknowledgement added; v3: explanations and references added. Final version to appear in Mod. Phys. Lett.

    Duality Symmetry in Momentum Frame

    Get PDF
    Siegel's action is generalized to the D=2(p+1) (p even) dimensional space-time. The investigation of self-duality of chiral p-forms is extended to the momentum frame, using Siegel's action of chiral bosons in two space-time dimensions and its generalization in higher dimensions as examples. The whole procedure of investigation is realized in the momentum space which relates to the configuration space through the Fourier transformation of fields. These actions correspond to non-local Lagrangians in the momentum frame. The self-duality of them with respect to dualization of chiral fields is uncovered. The relationship between two self-dual tensors in momentum space, whose similar form appears in configuration space, plays an important role in the calculation, that is, its application realizes solving algebraically an integral equation.Comment: 11 pages, no figures, to appear in Phys. Rev.

    Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome

    Get PDF
    Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS

    Synaptic processes and immune-related pathways implicated in Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Basics of statistical physics: a Bachelor degree introduction

    No full text

    Basics of statistical physics

    No full text
    Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles, and attempts to explain these in simple terms supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Einstein condensation. This revised second edition contains an additional chapter on the Boltzmann transport equation along with appropriate applications. Also, more examples have been added throughout, as well as further references to literature
    corecore